Use of a biomimetic strategy to engineer bone

C. E. Holy,1 J. A. Fialkov,2 J. E. Davies,3,4 M. S. Shoichet1,4
1Institute for Biomaterials and Biomedical Engineering, University of Toronto, 4 Taddle Creek Road, Toronto, Ontario, Canada M5S 3G9
2Sunnybrook and Women’s College Health Sciences Centre, University of Toronto, 2075 Bayview Avenue, North York, Ontario, Canada M4N 3M5
3Faculty of Dentistry, University of Toronto, 124 Edward Street, Toronto, Ontario, Canada M5G 1G6
4Department of Chemical Engineering and Applied Chemistry, Department of Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, Canada M5S 3E5

Received 20 May 2002; accepted 3 June 2002

Abstract: Engineering trabecular-like, three-dimensional bone tissue throughout biodegradable polymer scaffolds is a significant challenge. Using a novel processing technique, we have created a biodegradable scaffold with geometry similar to that of trabecular bone. When seeded with bone-marrow cells, new bone tissue, the geometry of which reflected that of the scaffold, was evident throughout the scaffold volume and to a depth of 10 mm. Preseeded scaffolds implanted in non-healing rabbit segmental bone defects allowed new functional bone formation and bony union to be achieved throughout the defects within 8 weeks. This marks the first report of successful three-dimensional bone-tissue engineering repair using autologous marrow cells without the use of supplementary growth factors. We attribute our success to the novel scaffold morphology.

Key words: tissue engineering; regenerative medicine; bone defect repair; scaffold; poly(lactic-co-glycolic acid)

INTRODUCTION

Bone-tissue engineering aims to heal bone defects with autologous cells and tissue without the donor site morbidity and expense associated with harvesting autogenous bone. One such strategy involves seeding autologous osteogenic cells in vitro throughout a biodegradable scaffold to create a scaffold–cell hybrid that may be called a tissue engineering construct (TEC). This strategy for bone regeneration is distinctly different from those that do not employ the seeding of autologous osteogenic cells but rely on stabilization of the hematoma at the operative site,1 and from others that rely on the employment of recombinant growth factors.2

The main challenge in preparing a useful TEC is to obtain a ubiquitous distribution of cells, and hence new tissue, throughout the entire 3-dimensional scaffold volume. The morphology of some biodegradable polymer scaffolds, due to insufficient interconnected macroporosity, has been shown to limit cell colonization, and thus new tissue formation, to the superficial pore layer, resulting in tissue only ~200 µm thick.3–5

Porous organic cements also have been used to fill bone-defect sites in rodents; however, new bone-tissue formation has not been demonstrated either in vitro or in vivo in segmental critical-size defects.6 Other strategies using inorganic scaffolds of calcium phosphate have allowed cell and tissue formation throughout the entire volume of the scaffolds,7,8 but the inorganic material itself remains in the implantation site long after bone repair.

We report herein a novel processing technology for creating a biodegradable polymer scaffold that mimics the architecture of trabecular bone and that supports bone growth throughout its volume both in vitro and in vivo. The scaffolds were prepared with poly(lactic-co-glycolide) (PLGA), a polymer commonly used for...
sutures and previously shown to allow bone-marrow cell differentiation into osteoblasts in vitro\(^9\) and to degrade on a time scale concomitant with that of bone formation in vivo.\(^{10}\)

Building on the tissue-engineering principle, we envision that our scaffolds will be temporary, providing the appropriate geometry for cell colonization and tissue formation. Thus, in a fashion analogous to autologous trabecular bone grafting, we specifically have not focused on the inherent mechanical properties of the scaffold except for the necessity of supporting cell colonization and matrix formation, as we have reported elsewhere.\(^{11}\) This approach was adopted not only because we envision that our scaffolds ultimately will be replaced by remodeling bone at the wound site, but also because autogenous trabecular bone chips, while providing mechanical support for the regenerating bone tissue, are not themselves implicated in the biomechanical loading of the operated bone.

MATERIALS AND METHODS

Scaffold formation

PLGA 75/25 (Birmingham Polymers, Inc. Birmingham, AL; Mw 81,500 g/mol) had an intrinsic viscosity of 0.87 dL/g at 30°C in chloroform. To a 1% PLGA solution in DMSO were added 2 g/mL of glucose crystals. The solution was frozen and immersed in H\(_2\)O and sugar was extracted from the precipitated polymer. The scaffolds were rinsed extensively in water to remove any residual solvent and then dried to constant mass (10\(^{-3}\) mg, 72h). The scaffolds were disinfected in 70% EtOH for 30 min prior to being seeded with cells for in vitro cell culture. For in vivo experiments, the scaffolds were sterilized by exposure to argon plasma (4 min at 100 W)\(^{12}\) and then pre-wetted in ethanol prior to being seeded with cells and/or implanted.

Cell culture

First-passage primary bone-marrow-derived cells were seeded onto 0.25-cm\(^3\) scaffolds using protocols and media described in detail elsewhere.\(^{13,14}\) Briefly, bone-marrow-derived cells were collected from both femora of young male Wistar rats (approximately 120 g) and from both iliac crests of rabbits into a fully supplemented medium (FSM): α-MEM supplemented with 15% fetal bovine serum, 50 mg/mL of ascorbic acid, 10 mM of β-glycerophosphate, and antibiotics (0.1 mg/mL of penicillin G, 0.05 mg/mL of gentamicin, and 0.3 mg/mL of fungizone); 10\(^{-7}\)M of dexamethasone (Dex) was added to the FSM of only Dex(+) cultures.

Cells were maintained in culture for 6 days and re-fed at days 2 and 5 with FSM. At day 6, Dex(−) cells were trypsinized with 0.01% trypsin in PBS whereas Dex(+) cultures, in which signs of calcification were visible, were trypsinized with 0.01% trypsin and 10 μM of ethylene diamine tetraacetic acid (EDTA) in PBS. Dex(+), and Dex(−) cells then were seeded onto separate pre-wetted scaffolds at a concentration of 7.5 \times 10^5 cells/scaffold. The rat cultures were maintained for 42 days at 37°C and 5% CO\(_2\) and re-fed every 2-3 days with FSM. Rabbit cultures were implanted in vivo after 14 days in culture. Dex was added to the FSM of Dex(+) cell cultures at a concentration of 10\(^{-8}\)M at re-feeding.

Tetracycline/HCl powder (Sigma, St. Louis, MO) was dissolved in α-MEM to prepare a stock solution of 90 mg/mL. A new tetracycline containing fully supplemented medium (TFSM) was prepared of α-MEM containing 15% fetal bovine serum, 50 mg/mL ascorbic acid, 10 mM of β-glycerophosphate, and 9 mg/mL of tetracycline. The TFSM was used for the last re-feeding on day 40. At day 42, cultures were washed in α-MEM (10 times, ~3 min each), and fixed overnight in Karnovsky’s fixative (2.0% paraformaldehyde, 2.5% glutaraldehyde, and 0.1M of sodium cacodylate buffer, pH 7.2–7.4). A few cultures were kept for SEM observations and were dehydrated in a series of graded alcohol solutions (70%, 100%) and freeze-dried at 0.01 mm of Hg for 2 days. All other cultures were kept in 0.1M of cacodylate buffer for histologic observations.

Rabbit osteotomy

New Zealand white (NZW) rabbits (Riemans Fur Ranches Limited, St. Agatha, Ontario) were housed and cared for in accordance with the Canadian Council on Animal Care Guidelines. Animals were provided food and water ad libitum. An overnight (14 h) food and water deprivation period preceded the surgery. An induction mixture of Ketamine (Ketamine hydrochloride 50 mg/kg), Rompun (xylazine, 5 mg/kg), and acetylpromazine (0.75 mg/kg) was administered intramuscularly as an anesthetic. The lateral left limb of each rabbit was shaved and prepared with an antiseptic solution of 10% povidone–iodine. Strict sterile procedures were followed. The femur was exposed through lateral longitudinal incision. The periosteum was lifted using a periosteal elevator, and a 2.7-mm titanium, eight-hole linear reconstruction mandibular plate (Leibinger, Howmedica) was applied to the anterolateral cortex and fixed with six 2.7-mm bicortical screws, three on either side of the osteotomy. A 1.2-cm defect was sawed, and rabbit bone-marrow cell-cultured PLGA foams were implanted into the defects. The incisions were closed in two layers.

Scanning electron microscopy

Samples for SEM observation were sputter-coated with ~10 nm of gold (Polaron Instrument Inc., Doylestown, PA). Scanning electron micrographs were taken on a Hitachi 2500 scanning electron microscope (SEM) at a 15-kV acceleration voltage.
Confocal microscopy

Samples were placed in custom-built chambers in 0.1M of cacodylate buffer. Fluorescent signals were detected by optical sectioning in a Bio-Rad MRC-600 confocal laser microscope.

Osteocalcin immunolabeling

Osteocalcin expression in both Dex(+) and Dex(−) cultures was assessed by immunohistochemical methods with a goat anti-rat osteocalcin antiserum (Biomedical Technologies Inc., Stoughton, MA) at a final dilution of 1:6000, followed by a second antibody labeling with donkey anti-goat IgG conjugated to horseradish peroxidase serum at a concentration of 1:250. The control was non-immune goat serum (1/1000 in buffer). A 3,3′-diaminobenzidine (DAB) substrate kit for peroxidase (Vector Laboratories, Burlingame, CA), supplemented with nickel chloride, was used to develop the staining.

Histology of in vitro samples

Fixed Dex(+) and Dex(−) cultured scaffolds were stained with hematoxylin and eosin in situ, embedded in Tissue-Tek, and cut into 10-μm thick sections at −20°C using an Ames Lab-tek cryostat (Elkhart, IN). Scaffold sections were further counterstained with von Kossa’s silver nitrate stain for visualization of mineralized matrix. Histologic sections were examined by light microscopy (Leitz, Heerbrugg, Switzerland), and pictures were taken with 100 ASA Kodak film.

Histology of in vivo samples

Entire femurs were dissected and fixed in 10% formalin for 2 weeks. The bones then were dehydrated in graded ethanol solutions, defatted in xylene, and embedded in Osteobed™. The embedded bones then were halved longitudinally along the middle of the plate. Both sides were stained with Van Giesen and toluidine blue.

Radiographs

Radiographs of rabbit femurs were taken at t = 0, 2, 4, 6, and 8 weeks postoperatively. Serial radiographs were assessed for bone regeneration at each time point using a simple yes or no system (n = 9 per group and per time point).

RESULTS AND DISCUSSION

For the creation of our scaffolds, we used a new processing technique that combined extraction with phase inversion without the use of toxic solvents. The choice of PLGA for the scaffold was one of practicality and positive results. We have been able to apply our processing strategy to other polymers but have focused on PLGA due to its extensive use in vitro and its ability to support bone tissue. Rodent bone-marrow cells that were seeded onto our scaffolds grew and produced mineralized bone tissue throughout the entire scaffold volume, as documented by osteocalcin immunolabeling, histology, and tetracycline labeling. TECs preseeded with autologous lagomorph bone-marrow-derived cells also were implanted into a 1.2-cm segmental femoral defect in rabbits and demonstrated new bone formation in vivo throughout the entire critical-size defect.

Thus we successfully demonstrated 3-D bone tissue formation throughout scaffolds several millimeters thick both in vitro and in vivo. Although PLGA has been criticized for acidic degradation products that stimulate an inflammatory response, we observed evidence of neither acidic degradation products in model degradation studies in vitro nor an inflammatory response in vivo. While we do not dispute the mechanism of degradation nor the inflammatory responses observed by others, we believe that the macroporous geometry of our scaffolds allows facile diffusion of acidic products out of the scaffold, which further is assisted by the rapid invasion of host vascular tissue, thereby avoiding the concentrated acidic milieu and associated inflammatory response.

Biodegradable scaffolds were prepared from a random copolymer of poly(ε,ε-lactide-co-glycolide) containing 75% lactide and 25% glycolide (PLGA 75/25) in a process that yielded scaffolds with a morphology similar to that of trabecular bone, as shown in Figure 1(a,b). The resemblance between these synthetic scaffolds and trabecular bone was further observed by scanning electron microscopy [Fig. 1(c)].

In particular, the scaffold architecture provided large pore diameters, high porosity, and large interconnections between the pores that were separated by struts rather than by solid, membranous walls. We chose to create scaffolds with a morphology similar to that of trabecular bone because the open pore geometry of the natural tissue is thought both to enhance metabolic activity and to allow continuous and highly responsive bone remodeling. While salt-extraction techniques result in highly porous scaffolds, the limited interconnectivity between the pores restricts cellular and particularly tissue penetration into the scaffold. Conversely, our scaffolds present a highly porous, interconnected morphology that facilitates...
cellular distribution and nutrient transport throughout the scaffold, as described more fully below.

It should be emphasized that other scaffolds exhibiting similar porosity, but with a nominal pore size two orders of magnitude smaller (10^{-10} to 10^{-100} m) than those we describe herein, have been employed as effective hemostatic devices in which some mineralized bone-tissue islands could be identified. Indeed, such bone formation is well known to occur during hematoma resolution. However, we know that scaffolds of such pore sizes would be inappropriate for a tissue-engineering strategy involving in vitro seeding of osteogenic cells. The early work of Rout et al. clearly demonstrated that scaffolds of even 200 μm in nominal pore size would not allow cell penetration, that such pores would be overgrown by cell sheets in vitro and act as a barrier to cell and tissue invasion. This has been confirmed in our recent work.

These comparisons emphasize how the biologic strategy of a proposed therapy plays a critical role in the choice of scaffold pore size and the degree of interconnected macroporosity. Indeed, the necessity for in vitro colonization by cells dictates a porosity that is quite different from that governing the in vivo response to implanted polymeric porous materials where, particularly in load-bearing conditions, it has been reported that a 200–350-μm pore-size range is optimal for invasion by host bone tissue.

We prepared the scaffolds by a new process, combining phase inversion with particulate extraction. Sugar crystals were suspended in a solution of PLGA 75/25 in DMSO. The slurry was frozen and then immersed in double-distilled water (ddH2O). The significant difference in this methodology from traditional extraction methods is the precipitation of the polymer using a phase inversion process. The latter, combined with particulate extraction, resulted in macroporous interconnectivity throughout the scaffold that previously has been unattainable. Scaffolds were characterized by both image analysis of serial thin sections with the NIH image analysis program (developed at the U.S. National Institutes of Health and available on the Internet at http://rsb.info.nih.gov/nih-image/) and mercury porosimetry. The average pore size was $\approx 1.44 \pm 0.30$ mm, with interconnections that ranged in size from 0.3 to 0.8 mm. Porosity was estimated by image analysis to be 92%, which corresponded to that measured by mercury porosimetry of 89%, notwithstanding the error associated with this technique for pores of $> 75 \mu$m.

After preparation, the scaffolds were rinsed extensively in ddH2O, disinfected in 70% ethanol, rinsed with α-MEM, and then used for cell culture. We cultured Wistar rat bone marrow cells on the scaffolds using a bone-marrow cell system described previously. Briefly, primary marrow stromal cells were cultured for 1 week in vitro, collected by trypsinization, and re-seeded onto the 3-D scaffolds for an additional 6 weeks of culture. Cultures were grown in medium supplemented with dexamethasone [Dex(+)] to induce the cells to express the osteoblastic phenotype. The control cultures were grown without dexamethasone [Dex(−)]. Bone formation was assessed by (1) osteocalcin immunolabeling with a goat anti-rat osteocalcin antibody on fixed cultures, (2) histologic observations, and (3) tetracycline labeling. Osteocalcin easily was detected in Dex(+) cultures [Fig. 2(a)], yet only faint background immunolabeling

Figure 1. Light micrographs of (a) a cross-sectioned foam and (b) human trabecular bone. A similar pore structure, strut size, and distribution can be observed in both images. The overall high porosity of trabecular bone is found in the cross-sectioned scaffold (Field widths = 1.8 cm). Scanning electron micrograph of (c) a foam structure. The resemblance with trabecular bone is clearly visible. [Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]

Figure 2. Light micrographs of (a) osteocalcin immunolabeled on a Dex(+) culture (field width = 1.1 cm) and (b) control sample, immunolabeled with non-immune serum. Strong immunolabeling is found on the pore walls and within the pore structure of the scaffold. Scanning electron micrograph of (c) tissue formed in vitro on a polymer strut within the scaffold in Dex(+) media. [Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]
was observed on control samples incubated in non-immune serum [Fig. 2(b)]. While osteocalcin is considered to be the most specific marker of osteoblasts and is expressed at relatively mature differentiation stages, low levels of osteocalcin also are detectable in megakaryocytes and platelets.27 In Dex(−)/H11002 cultures, no immunolabeling was observed, confirming the specificity of the marker for mature osteoblasts (data not shown).

The lack of detectable osteocalcin labeling in Dex(−) cultures suggests that if any of these cell types survived our culture conditions, they did not contribute significantly to the positive labeling seen in our Dex(+) immunolabeled samples. The distribution and intensity of the immunolabeling on Dex(+) scaffold cultures suggests that tissue had formed throughout the entire scaffold, reflecting, of course, cellular penetration throughout the scaffold.

These results differ significantly from scaffolds prepared by salt-extraction alone, where only slight immunolabeling was visible, reflecting the presence of tissue (and thus cells) on the periphery of the scaffold (Figure not shown). The newly formed matrix also was clearly visible by scanning electron microscopy. Figure 2(c) shows a SEM photomicrograph of a Dex(+) tissue grown on a polymer strut within a scaffold. Tissue formed along the pore walls throughout the entire scaffold volume yet did not bridge across the pore interconnections. This is particularly important for 3-D tissue engineering because cell layers bridging pore interconnections may prevent nutrient and fluid flow and, ultimately, tissue growth throughout the inner volume of the construct. We believe that the latter accounts for the limited cellular penetration of cells and tissue into scaffolds prepared by salt-extraction alone.4

Consistent with the results from osteocalcin immunolabeling and SEM observations, cell growth throughout the entire scaffold volume was confirmed histologically with hematoxylin & eosin-stained and von Kossa-counterstained sections. A thin layer of cells lined the pore walls throughout the entire Dex(+) scaffolds [Fig. 3(a)]. Nodular structures, similar to those previously identified as bone nodules,14 were positively labeled with von Kossa [cf. Fig. 3(b)]. While von Kossa staining has been used extensively to identify calcium phosphate deposits, it is not specific for hydroxyapatite; however, von Kossa together with the osteocalcin immunoassay suggests bone-like tissue formation.

We confirmed, in parallel experiments, that such ubiquitous bone growth did not occur in scaffolds prepared by the salt-extraction procedure alone.9 With the latter, which exhibits a macroporous geometry but limited interconnecting macroporosity, bone grew, as previously reported, only on the outer aspects of, and not throughout, these scaffolds.4 To the best of our knowledge, bone growth throughout such a volume has not been heretofore reported. We attribute our success in forming 3-D bone tissue to the high interconnecting macroporosity of our novel scaffolds.

Tetracycline also was used to visualize mineralized matrix deposition throughout the 3-D scaffolds in vitro, as has been described previously.28–30 When tetracycline-labeled scaffolds were imaged by confocal microscopy, intense fluorescent label was again evident throughout Dex(+) cultured scaffolds.10 At low magnification, the contours of the pore wall structures, on which cells grew and produced matrix, were clearly visible with no evidence of cells bridging the pore diameter.

To test the bone tissue engineering proof-of-principle, TECs were implanted into segmental osteotomy defect sites in New Zealand white rabbits. Defects of 1.2 cm were created in rabbit femurs that had been stabilized with titanium reconstruction plates. These defects were left empty, filled with a scaffold, or filled with a TEC seeded with autologous rabbit bone-marrow stromal cells using a cell-culture system similar to the rat-culture system described above.

As shown in a postoperative radiograph [Fig. 4(a)], the cell-loaded scaffold is radio-transparent. Postoperatively, all animals ambulated freely and were weight-bearing on the operated limb. Serial radiographs
showed that significantly more new bone had formed, and at earlier healing times, in the TEC group compared to the scaffold alone or to empty controls at both 2 weeks (77% for TEC, 33% for scaffold alone, and 11% for empty scaffolds) and 4 weeks (100%, 77%, and 33%, respectively). After 6 weeks, the radiographs of the TEC-filled defects indicated radio-opacity throughout the entirety of the segmental defects [Fig. 4(b)] whereas only limited radio-opacity was observed in empty [Fig. 4(c)] and scaffold-filled (figure not shown) controls.

In one case, a similar rabbit femoral defect was created and 6 weeks after implantation with a TEC, the plate was removed [Fig. 4(d)]. The animal ambulated freely for another 3 weeks, weight-bearing on the regenerated femur. The animal then was sacrificed and histology of the femur demonstrated bone union and evidence of remodeling within the defect area [Fig. 4(e)].

CONCLUSIONS

We believe that the bone tissue formation demonstrated throughout these novel 3-D scaffolds and the increase in both the rate and degree of bone regeneration in this nonunion segmental osteotomy rabbit model represent a major step forward in bone-tissue engineering. With a 3-D morphology similar to trabecular bone, the TEC scaffold promotes robust bone tissue formation, likely due to its unique microporosity and hydrophilic surface properties that support cell adhesion and differentiation. This study highlights the potential of such scaffolds for clinical applications in segmental bone defects.
ular bone, the biodegradable scaffolds support cell proliferation and matrix elaboration throughout their volume, thereby creating a 3-D bony structure that serves as an implant that replaces bone. We have demonstrated the in vitro and in vivo proof-of-principle required for bone-tissue engineering. In order to transfer this technology to clinical application, several unanswered questions must still be addressed. One of these is the amount of time required between cell seeding and implantation as this will directly deter-

References

1. Whang K, Healy KE, Elenz DR, Nam EK, Tsai DC. Engineering bone regeneration with bioabsorbable scaffolds with novel mi-

2. Hollinger JO, Winn SR, Hu Y, Sipe R, Buck DC, Xi G. Assem-

3. Ishaug SL, Crane GM, Miller MJ, Yasko AW, Yasemszmi MJ, Mikos AG. Bone formation by three-dimensional stromal osteo-

9. Holy CE, Shoichet MS, Davies JE. Bone marrow cell colonization of and extracellular matrix expression on biodegradable poly-

10. Holy CE, Dang SM, Davies JE, Shoichet MS. In vitro degrada-

11. Holy CE, Shoichet MS, Davies JE. Engineering three-dimen-

22. Schuggs C, Maquet V, Grandfils C, Jerome R, Teysseie P. Poly-

25. Bellows CG, Aubin JE, Heersche JNM, Physiological concentra-

26. Lian JB, Stein GS. Concepts of osteoblast growth and differen-

27. Thiede MA, Smock SL, Petersen DN, Grasser WA, Thompson DD, Nishimoto SK. Presence of messenger ribonucleic acid en-

28. Rodin KL, Smock SL, Petersen DN, Grasser WA, Thompson DD, Nishimoto SK. Presence of messenger ribonucleic acid en-

29. Bradbeer JN, Zanelli JM, Lindsay PC, Pearson J, Reeve J. Rela-

30. Chentoufi J, Hott M, Lamblin D, Buc-Caron MH, Marie Pj, Kellermann O. Kinetics of in vitro mineralization by an osteo-

We thank Drs. J. Aubin and J.P. Vacanti for reviewing this manuscript.